In the process of expanding capacities, the British recycling company decided it required a plant that could process different materials simultaneously. These included ASR fractions containing metals, waste electrical and electronic equipment (WEEE), metal composites and meatballs. After BHS had drawn up an initial concept for a plant, extensive tests were carried out at the Sonthofen test center with about two to three metric tons of each material required by the customer.
BHS calculated profitability after tests in the test center
BHS customers need a validated basis for decision-making before they invest in a new plant. Data on throughput and material quality, among other parameters, is collected during the tests and analyses in the test center. This information is then used to create a mass balance a profitability analysis– a key advantage for customers. The recycling company used the calculation to estimate the profitability of the plant investment.”
Accordingly, the experts from BHS designed the plant based on the test data. The feed material is supplied to the RS 3218 Rotorshredder via a feeder. The tools of the Rotorshredder exert a very intense stress on the feed material through impact, shock and shearing forces. The result is selective size shredding: Particle sizes are selectively reduced and composite materials are separated. All fine fractions of particle sizes smaller than 25 mm are processed on other existing plants. The fraction >25 mm is conveyed to a zigzag sifter, which frees the feed material from light material (fluff, films, fibers, dust, etc.).
The cleaned material is then transported via an overhead magnet to an cyclone separator, which was included in the order to BHS. In the overall control concept BHS took these assemblies into account and also supplied the steel structures for these parts of the plant. The process, which was developed by BHS together with the British company, produces market-ready end products.